If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+72t+5=0
a = 16; b = 72; c = +5;
Δ = b2-4ac
Δ = 722-4·16·5
Δ = 4864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4864}=\sqrt{256*19}=\sqrt{256}*\sqrt{19}=16\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-16\sqrt{19}}{2*16}=\frac{-72-16\sqrt{19}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+16\sqrt{19}}{2*16}=\frac{-72+16\sqrt{19}}{32} $
| 13-(7x)=69 | | (40x+15)=135 | | 9(x+3)=6x+39 | | 7u-7=-7(u+5) | | -2x+11.5=23.5 | | 5(v-4)=9v-24 | | 7(x-6)+2x=-6 | | -6=8(v+3)+7v | | 7(x+2)=4(2-5x)+27x | | 200.45=19(9.70+x) | | -27=-3u+7(u-5) | | 200.45=19(7.20+2.50+x) | | 3.5x/2=2.5 | | H=-16t+49 | | 2(x-9)+9x=4x+7(x-3) | | 150.15=11(8.8+4.2+x) | | 9(x-7)+8x=10x+7(x-9) | | -9.6=4.8(x-2.25) | | 252+x/4=85 | | 9+7k=6k | | 4.5x-3.7x=2.4 | | -11.2=5.6(x-1.25) | | 0.4x=0.5x-1 | | -11.2=5.6(x-1.25 | | 2+3x=-20+-8x | | 2+3x=-20+-8 | | 25.2=-8.4(x-3.75) | | 64.2=6(m+3.6) | | 10-10x=3x | | 79.2=8(m+3.8) | | 13/x=5/11 | | 2-3(y-5)+11=4 |